skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lozier, M_Susan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Deep Western Boundary Current (DWBC) is a major conduit for the equatorward export of dense waters formed in the subpolar North Atlantic and Nordic Seas that constitute the lower limb of the Atlantic Meridional Overturning Circulation. Here, we investigate the extent to which there is coherent propagation of property anomalies along the DWBC from the Labrador Sea exit to 26.5°N. Past studies have focused on relationships between DWBC anomalies at selected sites. Here we use a hydrographic data set (EN4) that covers the time period of 1970–2020 to examine coherence continuously along the boundary current. Our findings reveal sharp differences between the upper and deep Labrador Sea Water (uLSW, dLSW). Specifically, dLSW property anomalies are highly correlated at all points downstream to the Labrador Sea exit. Furthermore, the lags that yield maximum correlations uniformly increase with distance along the boundary. uLSW, however, shows a sharp decline in coherence along the boundary such that the anomalies downstream are poorly correlated with those at the Labrador Sea exit and the lag times are not monotonic. Most of the decline in uLSW coherence occurs from the Labrador Sea exit to Flemish Cap, where local variability at uLSW densities is large. Our study sheds light on the competition between advected property variability and local property variability that impacts the identification of anomalies downstream. The uLSW and dLSW differences expressed along the DWBC are also evident offshore, consistent with past Lagrangian studies. 
    more » « less
  2. Abstract A recent study using the first 21 months of the OSNAP time series revealed that the export of dense waters in the eastern subpolar North Atlantic―as part of the Atlantic Meridional Overturning Circulation (MOC)―can be almost wholly attributed to surface‐forced water mass transformation (SFWMT) in the Irminger and Iceland basins, thus suggesting a minor role for other means of transformation, such as diapycnal mixing. To understand whether this result is valid over a period that exceeds the current observational record, we use four different ocean reanalysis products to investigate the relationship between surface buoyancy forcing and dense water production in this region. We also reexplore this relationship with the now available 6‐year OSNAP time series. Our analysis finds that although surface transformation in the eastern subpolar gyre dominates the production of deep waters, mixing processes downstream of the Greenland Scotland Ridge are also responsible for the production of waters carried within the AMOC's lower limb both in the observations and reanalyses. Further analysis of the reanalyses shows that SFWMT partly explains MOC interannual variability, the remaining portion can be attributed to basin storage and mixing. Compared to the observations, the reanalyses exhibit stronger MOC variance but comparable SFWMT variance on interannual timescales. 
    more » « less
  3. Abstract The export of the North Atlantic Deep Water (NADW) from the subpolar North Atlantic is known to affect the variability in the lower limb of the Atlantic meridional overturning circulation (AMOC). However, the respective impact from the transport in the upper NADW (UNADW) and lower NADW (LNADW) layers, and from the various transport branches through the boundary and interior flows, on the subpolar overturning variability remains elusive. To address this, the spatiotemporal characteristics of the circulation of NADW throughout the eastern subpolar basins are examined, mainly based on the 2014–20 observations from the transatlantic Overturning in the Subpolar North Atlantic Program (OSNAP) array. It reveals that the time-mean transport within the overturning’s lower limb across the eastern subpolar gyre [−13.0 ± 0.5 Sv (1 Sv ≡ 106m3s−1)] mostly occurs in the LNADW layer (−9.4 Sv or 72% of the mean), while the lower limb variability is mainly concentrated in the UNADW layer (57% of the total variance). This analysis further demonstrates a dominant role in the lower limb variability by coherent intraseasonal changes across the region that result from a basinwide barotropic response to changing wind fields. By comparison, there is just a weak seasonal cycle in the flows along the western boundary of the basins, in response to the surface buoyancy-induced water mass transformation. 
    more » « less